
Accent Recognition System

Takudzwa Raisi

Thesis presented in fulfilment
of the requirements for the degree of

Bachelor of Science Honours
at the University of the Western Cape

Supervisor: Mehrdad Ghaziasgar

Co-supervisor: Reg Dodds

This version November 21, 2018

ii

Declaration

I, Takudzwa Raisi, declare that this thesis “Accent Recognition System” is

my own work, that it has not been submitted before for any degree or assess-

ment at any other university, and that all the sources I have used or quoted

have been indicated and acknowledged by means of complete references.

Signature: . Date: .

Takudzwa Raisi.

iii

iv

Abstract

Many South African languages have different speaking styles called accents or

dialects. Identifying the accent is crucial in automatic speech recognition in

order to improve speech recognition systems. This research aims to recognize

different accents when English is spoken. When an Afrikaans speaking per-

son or Xhosa speaking person, etc., speaks, the system then recognizes their

accent.

v

vi

Key words

Discrete Fourier transform

Fast-Fourier transform

Mel-frequency cepstrum

Mel-scale fitering

Principal component analysis

Support vector machine

Voice processing

vii

viii

Acknowledgment

First, I would like to express my sincere gratitude to my supervisor Dr Mehrdad

Ghaziasgar and co-supervisor Reg Dodds for their continuous support of my

honours research study. Their patience, motivation, and immense knowledge

has played an vital role in my research and writing of this thesis. I could not

have imagined having better supervisors and mentors for my honours degree.

I would like to also give thanks to the National Research Fund for funding my

BSc Honours and I am grateful to everyone who has given their time, effort

and support to me throughout my years of studying.

ix

x

Contents

Declaration . iii

Abstract . v

Key words . vii

Acknowledgment . ix

List of Tables . xiii

List of Figures . xiv

Glossary . xv

1. Introduction . 1

1.1 Problem Statement . 1

1.2 Project Requirements . 2

1.3 Prospective Solution . 2

1.3.1 Mel-Frequency Cepstral Coefficients 2

1.4 Related Work . 3

2. System Design . 5

2.1 System Interface . 5

2.1.1 Terminal Process . 5

2.2 High Level Design . 6

2.3 Low-Level Design . 6

2.3.1 Fast Fourier Transform . 7

2.3.2 Mel Scale Filter Bank . 7

2.3.3 Logarithm . 8

2.3.4 Discrete Cosine Transform . 8

2.3.5 Feature Vector . 9

3. Implementation . 10

3.1 Code Documentation . 10

3.1.1 Fast Fourier Transform . 10

3.1.2 MelScale Filtering . 10

3.1.3 Logarithm . 11

3.1.4 Discrete cosine transform . 11

3.1.5 Feature Vectorization . 11

xi

3.1.6 Description of Data Collected 12

3.1.7 Training . 13

3.2 Libraries Used . 13

4. Testing and Optimization . 15

4.1 Testing . 15

4.1.1 Overview . 15

4.1.2 Data set . 15

4.1.3 Training . 15

4.1.4 Testing . 16

4.1.5 Evaluation . 17

4.1.6 Results . 17

4.1.7 Further Testing using Four Accents 18

4.2 Conclusion . 18

Bibliography . 19

A. System Manual . 20

A.1 Description . 20

A.2 System Requirements . 20

A.3 Installations . 20

A.4 Functions . 21

B. Code Listings . 22

B.1 Description . 22

B.2 Feature Extraction, Training and Testing 22

xii

List of Tables

4.1 Data set arrangement . 15

4.2 Training and Testing . 17

4.3 Test Scores . 18

4.4 Test Scores using four accents 18

A.1 Requirements . 20

A.2 Main functions . 21

xiii

List of Figures

1.1 Mel-Frequency Cepstral Coefficients (Tomchuk, 2016) 2

1.2 Fast Fourier Transform (Yang, 1990) 3

2.1 Graphical User Interface . 5

2.2 Terminal Process . 6

2.3 High Level Design . 7

2.4 Filter bank on a Mel-Scale . 8

2.5 Vector Feature . 9

3.1 Labelled Features . 13

A.1 Graphical User Interface . 21

xiv

Glossary

Discrete-Fourier transform (DFT) —the discrete-Fourier is a digital ver-

sion of the continuous Fourier transform that uses data known at discrete

intervals.

Fast-Fourier transform (FFT) —the Fourier transform is a function that

fits continuous functions with a weighted series of sines and cosines. The

fast-Fourier transform is an O(n log n) version of the Fourier transform.

Mel-frequency cepstrum (MFC —the Mel-frequency cepstrum represents

the short-term power spectrum of a sound.

Mel-frequency cepstrum coefficients (MFCC —Mel-frequency cepstral

coefficients collectively make up an MFC.

Principal Components —the principal components the biggest eigen val-

ues of of a feature space.

Support vector machine (SVM) —the support vector machine is used to

separate exemplars into classes.

xv

Chapter 1

Introduction

Accent recognition is an important aspect of speech recognition. Accent is

a distinctive way of pronouncing a language and is often associated with a

particular country, region or social class. There are two differences which

exist between speakers: acoustic contracts that are related to the size and

shape of the vocal tract and variations in pronunciation which are referred to

as accent.

There are two speech research areas related to accent: accent adaptation

through pronunciation modelling and accent identification. In South Africa

we have 11 spoken languages with many different regional dialects. The

way a Xhosa person pronounces certain words in English differs from how

an Afrikaans speaking person pronounces the same words. Machine learning

enables us to create systems that can recognize and deal with various accents.

Deep learning based on neural nets and many other tested methods may be

used.

1.1 Problem Statement

The development of computing speech recognition has advanced significantly

(Barry et al., 1989) but problems such as accent identification are still under

research. As humans, because of our backgrounds, ethnicity and country of

origin, we tend to have different accents. Any dialect or language has its

own accents and as a result a common language like English is spoken and

enunciated differently. This has created one of the most common problems in

speech recognition.

1

2

1.2 Project Requirements

This research requires people from different backgrounds and ethnicity who

speak different languages and therefore have different dialects when talking in

English. A microphone is used to record the subjects repeating some English

sentences. These recordings are used to extract features to train our machine.

1.3 Prospective Solution

This research aims to solve this problem by designing a system that can iden-

tify and recognize accents. Once the system is implemented, a user should be

able to speak certain words or a sentence in English through a microphone

then the system is able to use the speech and to identify the accent. This

is done using machine learning techniques to get features of different accents

then training the system with the data.

There are also other means to coming up with a solution, by using hidden

Markov model, support vector machine, etc. (Oh, 2014).

To extract features for accent we can use Mel-frequency cepstral coefficients

with modelling components such as hidden Markov model, support vector

machine, Gaussian mixture model and artificial neural network to recognize

English accents.

Figure 1.1: Mel-Frequency Cepstral Coefficients (Tomchuk, 2016)

1.3.1 Mel-Frequency Cepstral Coefficients

The Mel-frequency cepstral coefficient is broken into four parts, namely:

1. fast Fourier transform,

2. Mel-frequency spectrum,

3

3. discrete cosine transform,

4. logarithms of the signal.

Fast Fourier transform tells us more about time wavelength and breaks down

the signal into frequencies. It converts a signal into individual spectral compo-

nents and thereby provides frequency information about the signal. Figure 1.2

represents of an audio signal that has gone through FFT and the frequency

information about the signal is depicted.

Figure 1.2: Fast Fourier Transform (Yang, 1990)

The Mel scale helps us in interpreting pitch. Our auditory system does not

interpret pitch in a linear manner and to solve the Mel scale is applied using

triangular bandpass filters.

We use discrete cosine transform that we get from the triangular bandpass

filters. After this we implement the logarithm of the signal using logs.

1.4 Related Work

Much work has already been done in the field of automatic speech recognition

with accent. ‘IBM ViaVoice’ is software implemented by IBM to recognize

speech and sounds. The software consist of reading certain sentences and

words in order to learn speech. The software then adapts itself to the spe-

cific users’ way of saying certain words, their tone and sound and intonation

features.

Huang et al. (2004) propose two different methods for accent adaptation.

These methods were pronunciation dictionary modelling to reduce recognition

4

errors and Gaussian mixture model-based accent detection system was made

for model selection.

Other interesting related work that has been done uses the Indian language,

Telugu, which is widely spoken in Southern India. Telugu has many different

accents and using techniques such as MFCC they were derived features to

train their model and detect accent and speakers successfully (Mannepalli

et al., 2015).

Other related work includes the ‘English Dialects’ which is an app that at-

tempts to guess a user accent based on the pronunciation of 26 words. The

app creates a heat map then tries to guess where the accent is from.

Humphries and Woodland (2012) proposed using decision trees to build

A pronunciation dictionary for the recognition process. These trees are then

used to cluster the measured pronunciation variations.

Chapter 2

System Design

2.1 System Interface

The proposed system interface has a simple design which that displays the

system name ‘Accent Recognition System’ which will consist of a Record

button, Predict button, Help button and an Exit button and a display

underneath to show the output of the program.

The Record button performs the action of recording the user’s voice and then

processing it. This process can be seen running on the command prompt.

The Predict button performs the action of predicting the accent after user

speaks into the microphone.

The Help button gives the user a description about the system and how it

works, also a manual and a set of commands of how the program can be run.

The Exit button exits the program after the user is finished using the system.

Figure 2.1: Graphical User Interface

2.1.1 Terminal Process

When running the algorithm, it is processed on the terminal and as a user’s

voice is recorded the terminal runs this process, in five different steps, namely:

• Recording

5

6

• Done Recording

• Extracting features

• Processing Accent

• Accent detected

Figure 2.2: Terminal Process

2.2 High Level Design

The high-Level design shows the schematic representation of how the system

will function. This design will show the step-by-step procedure of how the

system achieves its goal of detecting the accent of the user.

The process starts with the user speaking into the microphone. At this stage

the user will be requested to repeat a given sentence or phrase in English.

The audio is then processed and the MFCC is code is run. The wav file goes

through several stages to turn it into a feature vector. We then use support

vector machine for building our model, training and then testing. When this

is done successfully, we will then be able to detect the user’s particular accent.

2.3 Low-Level Design

Low-level design focuses mainly on the technical process of extracting fea-

tures of a user’s accent using MFCC. After the audio is received from the

microphone, the fast Fourier transform algorithm is run (Yang, 1990).

7

Figure 2.3: High Level Design

2.3.1 Fast Fourier Transform

This algorithm transfers the audio signal into its frequency domain. The FFT

is a fast, algorithm to compute the discrete fourier transform (DFT). The

DFT is given by

Xk =
N−1∑
n=0

xne
−i2πkn/N .

After DFT we then proceed to the inverse discrete fourier transform (IDFT)

xn =
1

N

N−1∑
k=0

Xke
i2πkn/N .

The transformation from xn → Xk is a translation from configuration space to

frequency space, and can be very useful in both exploring the power spectrum

of a signal.

2.3.2 Mel Scale Filter Bank

Mel filter bank applies triangular filters,on a Mel-scale to the power spectrum

to extract frequency bands. The Mel-scale aims to mimic the non-linear human

ear perception of sound, by being more discriminating at lower frequencies and

less discriminating at higher frequencies (Oh, 2014). The algorithm can be

computed from this formula below:

M = 2595 log10(1 +
f

700
).

This algorithm as pseudo code :

8

1 def melscale(X[])

2 for i in length(X):

3 X[i] = 2595*ln(1+X[i]/700)

4 return X

Below is a representation of Mel-filter bank containing triangular filters.

Figure 2.4: Filter bank on a Mel-Scale

2.3.3 Logarithm

This step takes the log of the powers at each Mel frequencies. It also serves

to transform a multiplication into an addition as it is part of the computation

of the cepstrum.

If we have a source signal x is convolved by some impulse response h. The

resulting magnitude spectrum is:

|Y (ω)| = |X(ω)||H(ω)|

Then after applying algorithm we get:

log |Y (ω)| = log |X(ω)|+ log |H(ω)|

2.3.4 Discrete Cosine Transform

DCT is used for de-correlating speech data or the compression of most of the

information in smaller number of coefficients and is given by

Xk =
1

2
(x0 + (−1)kxN−1) +

N−2∑
n=1

xn cos

[
π

N − 1
nk

]
, for k = 0, . . . , N − 1.

9

2.3.5 Feature Vector

After implementing MFCC and then running the algorithm on an audio file.

The result will be feature vector. Below is a representation of this:

Figure 2.5: Vector Feature

Chapter 3

Implementation

3.1 Code Documentation

3.1.1 Fast Fourier Transform

The Fast Fourier transform converts a signal into individual spectral compo-

nents and thereby provides frequency information about the signal. Below is

an implementation of this in python

1 function fft(audio)

2 rate,signal = scipy.io.wavfile.read(audio.wav)

3 rate, signal = 44000, np.random.random((9218368,))

4 data_length = len(audio)

5 channel = np.zeros(2**(int(np.ceil(np.log2(data_length)))))

6 channel[0:data_length] = signal

7 fourier = np.fft.fft(channel)

3.1.2 MelScale Filtering

Mel filter bank applies triangular filters,on a Mel-scale to the power spectrum

to extract frequency bands. The Mel-scale aims to mimic the non-linear human

ear perception of sound, by being more discriminating at lower frequencies and

less discriminating at higher frequencies. Below is pseudo code to do this:

1 def melscale(X[])

2 for i in length(X):

3 X[i] = 2595*ln(1+X[i]/700)

4 return X

10

11

3.1.3 Logarithm

The logarithm serves to transform a multiplication into an addition. It is part

of the computation of the cepstrum which take the logarithm of all filter bank

energies. Below is a pseudo code of this:

1 function Log(Arr[]):

2 newArr[]

3 for i in length(Arr):

4 newArr[i] = log(Arr[i])

5 return newArr

3.1.4 Discrete cosine transform

Thw DCT can be thought as a compression step, it is used for de-correlating

speech data or the compression of most of the information in smaller number

of coefficients. Below is the pseudo code of this:

1 function DCT(newArr[]):

2 dctarray[]

3 k = length of newArr

4 for (i in k-1):

5 for (j in k):

6 for (j in k):

7 hold = hold + newArr[j]*cos(k*(2*j-1)*pi/2*k)

8 dctarray = hold

9 hold = 0

10 return newArr

3.1.5 Feature Vectorization

Vectorization takes the data extracted from audio files using MFCC and con-

vert the data into a 3D format. This data becomes our features which will be

used for training and testing. The pseudo code can be seen below:

1 function vectorize(dctarray):

2 vecarray = zeros(length(dctarray) + 2)

3 for (i = 1 in length(vecarray) - 1):

4 vecarray[i] = dctarray[i - 1]

12

5 delta[]

6 k = 2

7 for (i in length(dctarr)):

8 delta[i] = fill[j] fill[i]

9 j++

10 populatedelta = zeros(length(delta) + 2)

11 for (i = 1 in length(delta) - 1):

12 populatedelta[i] = delta[i-1]

13 deltatwo[]

14 j = 2

15 for (i in length(delta)):

16 ‘ deltatwo[i] = populatedelta[j] - populatedelta[i]

17 j++

18 featVec[][][]

19 for (i in length(dctarray)):

20 featVec[i][i][i] = dctarray[i], delta[i], deltatwo[i]

21 return featVec

3.1.6 Description of Data Collected

In this research the focus is on three South African accents, namely Xhosa-

English accent, Afrikaans-English accent and English-English accent. For each

of these three accents five different sentences were collected for each of five

speakers

1. “Coding teaches you how to think”,

2. “Life is full of adventures”,

3. “Yesterday you said tomorrow”,

4. “I love music a lot”, and

5. “Cape Town is a beautiful city”.

Each of five subjects recorded 10 samples of each sentence making 50 audio

wav files for each speaker. In total the data set consists of 250 wav files for

each of the three different accents giving a total of 750 recordings.

13

3.1.7 Training

The features extracted from the audio files are used for training. The recog-

nition process is done through a support vector machine which is a machine

learning module with associated learning algorithms that analyse data used

for classification and regression analysis (Yang, 1990).

In order to achieve training, the feature set for each accent should have a

y-label to represent it in the SVM model. English-English accent is labelled

by “1”, Xhosa-English is labelled “2” and Afrikaans-English is labelled by

“3”. Figure 3.1 is a representation of features randomized with labels for

training. After the features are stored in the prescribed format for the train()

Figure 3.1: Labelled Features

procedure they are used for training. Below is a part of pseudo code to perform

classification training.

1 arrayX = [features]

2 arrayY = [1, 3, 2, 1, 3, 2, 1,]

3 X_train, Y_train = model_selection.train(arrayX,arrayY)

After training has been done the SVM creates a training model and we use

testing file created to form a prediction model which then is able to count the

number of hits and misses to give the accuracy as a percentage.

3.2 Libraries Used

The following libraries are used:

1. import scipy.io.wavfile as wav—For reading the wav audio files.

2. from python speech features import mfcc—Provides common speech

features for ASR including MFCCs and filter bank energies.

14

3. from sklearn import model selection —This helps us in model se-

lection.

4. from sklearn.model selection import train test split—Used for

training and testing using LibSVM.

Chapter 4

Testing and Optimization

4.1 Testing

4.1.1 Overview

In order to achieve testing results and predictions, the system is first trained

on the data set to produce a model using the procedure explained in Chapter 3.

Once the model is created, the test set data is fed into the model using the

predict() function. The predictions made by the model can then be used

to determine the accuracy to see how the model behaves and how precisely

accents can be recognized.

4.1.2 Data set

The data set contains of 750 audio clips taken in the same room with the

same microphone. These audio clips consist of three accents, five subjects, five

sentences and ten samples for each of these. Figure 4.2 shows these details.

Table 4.1: Data set arrangement
Accent Subjects Sentences Samples
English 5 5 10
Xhosa 5 5 10

Afrikaans 5 5 10

4.1.3 Training

In this research we had four questions to answer to test how well we can predict

accent, so the training was split into four parts. These questions were:

1. If subject is seen and sentence known but ignoring some samples, how

well can we predict accent.

2. If subject is seen but sentence is unseen, how well can we predict accent.

15

16

3. If subject is unseen but sentence is seen, how well can we predict accent.

4. If subject is unseen and sentence is unseen, how well can we recognize

accent.

Before training, it is key to scale the features so that we can standardize the

range of independent variables or features of data. After this has been done

the next phase was to build the features into the prescribed LibSVM format.

Below is the python code to achieve this.

1 def custom_dump_svmlight_file(X_train,Y_train,filename):

2 featinds = [" " + str(i) + ":" for i in range(1,len(X_train

[0])+1)]

3 with open(filename, ’w’) as f:

4 for ind, row in enumerate(X_train):

5 f.write(str(Y_train[ind]) + " " + "".join([x for x in

itertools.chain.from_iterable(zip(featinds,map(

str,row))) if x]) + "\n")

The next step is optimization which is paramount to get the best results

from our model and to improve the performance of the system. To optimize

the SVM cross validation is performed to find the best Cost and Gamma

parameter. For each question we had to perform cross validation and train to

produce a prediction model.

4.1.4 Testing

The scaled features and normalized data are then used to test the accuracy of

the prediction model. In order to achieve testing and training the pseudo-code

below was used to predict using the model.

The clf.fit() function fits the x-values and the y-values of our training to

the model.

The predict() function is then used to test the correctness of the model using

our testing values.

The load() function loads the prediction model produced by training.

The label that is produced by the model predicts the accent when a user

speaks into the microphone.

17

1 import SVM

2

3 clf.fit(X_train,Y-train)

4 modelPrediction = clf.predict(X_test)

5 print("The model accuracy is:accuracy_score(Y_test,modelPrediction))

6

7 clf = joblib.load(’all.model’)

8 label = clf.predict([fbank_feat])

9 print(["English", "Xhosa", "Afrikaans"][label - 1] + " accent

detected")

For each question training and testing was done differently. Below is a table

showing how it was broken into segments . In Question1 five samples were

used to train and to test, then in Question2 four sentences were used to train

and one was used to test, then Question3 three of the subjects were used for

training and two subjects for testing and finally in Question4 we used four

subjects to train and four sentences to train thereby completely removing one

person per accent for testing. Below is a table showing how it was broken into

segments.

Table 4.2: Training and Testing
Question 1 Subjects Sentences Samples

Train 5 5 5

Test 5 5 5

Question 2 Subjects Sentences Samples

Train 5 4 10

Test 5 1 10

Question 3 Subjects Sentences Samples

Train 3 5 10

Test 2 5 10

Question 4 Subjects Sentences Samples

Train 4 4 10

Test 1 1 10

4.1.5 Evaluation

4.1.6 Results

The results from the testing for each question showed satisfactory results.

18

Table 4.3: Test Scores
Question Accuracy Precision Recall F1 score

1 93.6% 94.39% 93.6% 93.67%

2 91.3% 91.66% 91.33% 91.36%

3 86% 86.59% 85.67% 85.7%

4 63% 69% 63% 61%

The overall accuracy of Question 1–3 was 90% and for Question 4 the aim was

to test whether if we would correctly predict the accent of an unknown subject

that would speak an unknown sentence. Therefore analyzing the results the

classifier has done better than expected as random guessing the classifier would

have predicted 33% but it has managed to produce double the expected results.

4.1.7 Further Testing using Four Accents

To further test and verify our system we added a ‘Cape Coloured’ accent which

is an accent spoken by so-called coloured people from Cape Town. This then

increased the accents used to four, namely English-English accent, Xhosa-

English accent, Afrikaans-English accent and Cape-Colored-English accent.

The results obtained after this testing were very good and satisfactory.

Table 4.4: Test Scores using four accents
Question Accuracy Precision Recall F1 score

1 91.6% 92% 91.6% 91.66%

2 89.5% 89.8% 89.5% 89.48%

3 85% 85.78% 85% 85%

4 71% 75.25% 71% 70%

4.2 Conclusion

The support vector machine proved to be a perfect classifier for this project

and the Mel-frequency cepstral coefficients technique was suitable for the ac-

cent recognition problem and solving it. The overall results for this project

were strong and it was also able to meet its expected requirements and there-

fore it was a success.

Bibliography

Barry, W. J., Hoequist, C. E., and Nolan, F. J. (1989). An approach to

the problem of regional accent in automatic speech recognition. Computer

Speech and Language, 3(4):355–366.

Huang, C., Chang, E., and Chen, T. (2004). Accent issues in large vocabulary

continuous speech recognition. Speech Technology, 7(23):141–153.

Humphries, J. J. and Woodland, P. C. (2012). Using accent-specific pronuncia-

tion modelling for improved large vocabulary continuous speech recognition.

Speech Modelling, 5(3):155–187.

Mannepalli, K., Sastry, P. N., and V.Rajesh (2015). Accent detection of

Telugu speech using supra-segmental features. International Journal of Soft

Computing, 10(5):287–292.

Oh, S. (2014). Bayesian method recognition rates improvement using HMM

vocabulary recognition model optimization. Digital Convergence, 12(7):273–

278.

Tomchuk, K. K. (2016). Frequency masking in speech MFCC-parameter-

ization in presence of noise. Information and Control Systems, 82(3):8–14.

Yang, D. (1990). Fast discrete radon transform and 2-D discrete Fourier

transform. Electronics Letters, 26(8):550–551.

19

Appendix A

System Manual

A.1 Description

This manual provides the instructions of installations and functions for the

Accent Recognition Program. It also instructs on configuration other external

component for suitable accuracy and performance of the system.

A.2 System Requirements

The following requirements are to be installed for the Accent Recognition

program to operate.

Table A.1: Requirements
Type Name Recommended

Environment Python 3 Python 3.6.4
OS Linux or MS Windows MSWin 10 or 64bit Ubuntu 16.04

Arithmetic library NumPy and SciPy N/A
SVM library Sklearn or Libsvm N/A
Audio library Pyaudio or Libsvm N/A
Microphone Studio Condenser Mic C01U PRO Samson

Note: If the microphone that will be used requires a driver, please make sure

the driver is functional.

A.3 Installations

All software installations are done through the terminal. Make sure there is

sudo rights for clearance. If using ubuntu open a new terminal and execute

the following:

1 sudo apt-get install python3

2 sudo apt-get install python3-numpy

3 sudo apt-get install python3-scipy

20

21

4 sudo apt-get install python3-pyaudio

5 sudo apt-get install python3-sklearn

If using windows first download python and install it then open the command

prompt and execute the following:

1 python -m pip install numpy

2 python -m pip install scipy

3 python -m pip install pyaudio

4 python -m pip install sklearn

5 python -m pip install libsvmn

Once the user runs the program and speaks into the microphone and press

predict the graphical user interface will display the accent, here is an example:

Figure A.1: Graphical User Interface

A.4 Functions

The main functions of the system are:

Table A.2: Main functions
Record Performs the action of recording the user’s voice

and then processing it
Predict Performs the action of predicting the accent after

user speaks into the microphone.
Help Gives the user a description about the system and

how it works.
Exit Exits the program after the user is finished using

the system.

Appendix B

Code Listings

B.1 Description

This chapter includes all the source code used for implementing the Accent

Recognition System.

B.2 Feature Extraction, Training and Testing

1 from python_speech_features import mfcc
2 from python_speech_features import delta
3 from python_speech_features import logfbank
4 import scipy.io.wavfile as wav
5 import scipy.interpolate as interpol
6 import glob
7 import wave
8 import pickle
9 import sklearn

10 import scipy.io.wavfile as wav
11 import csv
12 import os
13 import array
14 import re
15 import numpy as np
16 import itertools
17 from time import time
18 from sklearn.svm import SVC
19 from sklearn.metrics import classification_report
20 from sklearn.model_selection import GridSearchCV
21 from sklearn.externals import joblib
22 from sklearn.model_selection import train_test_split
23 from sklearn.model_selection import cross_val_score
24 from sklearn.metrics import classification_report, confusion_matrix
25 from sklearn.model_selection import train_test_split
26 from sklearn.preprocessing import StandardScaler
27 from sklearn.svm import LinearSVC
28 from sklearn.svm import libsvm
29 import subprocess
30 from sklearn import metrics
31 from subprocess import Popen
32 from sklearn import preprocessing
33 import matplotlib.pyplot as plt
34 from sklearn import linear_model
35 from sklearn.metrics import accuracy_score
36 from matplotlib import pyplot as plt
37 from sklearn.metrics import f1_score
38 from sklearn.metrics import precision_score
39 from sklearn.metrics import recall_score
40 from sklearn.metrics import average_precision_score
41

22

23

42

43 gnuplot_exe = r"C:\Users\Takudzwa Raisi\Desktop\accent_recognition\gnuplot\
binary\gnuplot.exe"

44 grid_py = r"C:\Users\Takudzwa Raisi\Desktop\accent_recognition\libsvm-3.22\
tools\grid.py"

45 svmtrain_exe = r"C:\Users\Takudzwa Raisi\Desktop\accent_recognition\libsvm
-3.17-GPU_x64-v1.2\windows\svm-train-gpu.exe"

46 svmpredict_exe = r"C:\Users\Takudzwa Raisi\Desktop\accent_recognition\
libsvm-3.17-GPU_x64-v1.2\windows\svm-predict.exe"

47

48 def paramsfromexternalgridsearch(filename, crange, grange, printlines=False
):

49 #printlines specifies whether or not the function should print every line
of the grid search verbosely

50 cmd = ’python "{0}" -log2c {1} -log2g {2} -svmtrain "{3}" -gnuplot "{4}"
"{5}"’.format(grid_py, crange, grange, svmtrain_exe, gnuplot_exe,
filename)

51 f = Popen(cmd, shell = True, stdout = subprocess.PIPE).stdout
52

53 line = ’’
54 while True:
55 last_line = line
56 line = f.readline()
57 if not line: break
58 if printlines: print(line)
59 c,g,rate = map(float,last_line.split())
60 return c,g,rate
61

62 def accuracyfromexternalpredict(scaled_test_file, model_file,
predict_test_file, predict_output_file):

63 cmd = ’"{0}" "{1}" "{2}" "{3}"’.format(svmpredict_exe, scaled_test_file,
model_file, predict_test_file)

64 f = Popen(cmd, shell = True, stdout = subprocess.PIPE).stdout
65 #f = subprocess.Popen(cmd, shell = True, stderr=subprocess.STDOUT, stdout

=subprocess.PIPE)
66

67 line = ’’
68 while True:
69 last_line = line
70 line = f.readline()
71 if not line: break
72

73 return last_line.split(" ")[3][1:-1].split("/")[0], last_line.split(" ")
[3][1:-1].split("/")[1]

74

75 def normalize(inSig,outLen):
76 #This function normalizes the audio signal.
77 #It first produces an interp1d structure that readily interpolates

between points
78 #Then it sets the size of the space to outLen=200000 points, and interp1d

interpolates to fill in gaps
79 #In essence, it takes every audio signal and produces a signal with

outLen=200000 data points in it = normalization
80 inSig = np.array(inSig)
81 arrInterpol = interpol.interp1d(np.arange(inSig.size),inSig)
82 arrOut = arrInterpol(np.linspace(0,inSig.size-1,outLen))
83 return arrOut
84

85

86 def writetopcklfile(outpath, data):
87 with open(outpath, ’wb’) as f:
88 pickle.dump(data, f)
89

90 def readfrompcklfile(outpath):
91 with open(outpath, ’rb’) as f:
92 return pickle.load(f)
93

24

94 def custom_dump_svmlight_file(X_train,Y_train,filename):
95 #This function inserts the extracted features in the libsvm format
96 featinds = [" " + str(i) + ":" for i in range(1, len(X_train[0])+1)]
97 with open(filename, ’w’) as f:
98 for ind, row in enumerate(X_train):
99 f.write(str(Y_train[ind]) + " " + "".join([x for x in itertools.chain.

from_iterable(zip(featinds,map(str,row))) if x]) + "\n")
100

101 def main():
102

103 start = time()
104

105 path =r’accents’
106 files = os.listdir(path)
107

108 features = []
109 label = []
110 Filenames = {}
111 X =[]
112 Xdir = {}
113 y =[]
114 for filename in glob.glob(os.path.join(path, ’*.wav’)):
115 Filenames[filename[filename.find(’\\’)+1:]] = filename
116

117

118 for sounddata in Filenames:
119 (rate,sig) = wav.read(path+’/’+sounddata)
120

121 # rate = sampling rate, sig = data; the data will
122 # be a two-tuple array format where the first item
123 # of each row will be the left channel data, and
124 # the second item will be the right channel data
125 # This code below is used to extract features
126 # from audio samples using MFCC
127 newSig = []
128 for i in range(len(sig)):newSig.append(sig[i][0])
129 newSig = normalize(newSig,200000)
130 rate = newSig.shape[0]/sig.shape[0]*rate
131 mfcc_feat = mfcc(newSig,rate)#,nfft=)
132 d_mfcc_feat = delta(mfcc_feat, 1)
133 fbank_feat = logfbank(newSig,rate)
134 fbank_feat = fbank_feat.ravel()
135 fbank_feat = normalize(fbank_feat,11778) #Normalize features
136 features.append((normalize(fbank_feat.ravel(),11778),sounddata[:1]))
137 Xdir[sounddata.replace(".wav", "")] = len(features) - 1
138 X.append(fbank_feat)
139

140 y.append(sounddata[:1])
141 finish = time()
142 print("Time to load data %.3f s" % (finish - start))
143

144

145 #--
146 # 1. If subject is seen and sentence known
147 # but taking some samples out
148 #--
149 # 3 accents x 5 subjects x 5 sentences x 10 samples
150 # First question: sub known, sent known
151 print("Computing Question 1: If subject is seen and sentence known but

taking some samples out")
152 totalaccents = 4
153 subsperaccent = 5
154 totalsents = 5
155 totalsamples = 10
156 trainsamples = 5
157

158

25

159 testsamples = totalsamples - trainsamples #Don’t change
160 #Accent,Subject,Sentence,Sample
161 X_train = []
162 X_test= []
163 Y_train = []
164 Y_test = []
165

166

167 for acc in range(1,totalaccents+1):
168 for sub in range(1,subsperaccent+1):
169 for sent in range(1,totalsents+1):
170 for samp in range(1,totalsamples+1):
171

172 filename = ",".join([str(it) for it in [acc,sub,sent,samp]])
173

174 if samp <= trainsamples :
175

176 X_train.append(X[Xdir[filename]]) #Features of audio sample 1-5
177 Y_train.append(int(filename[0])) #labels (1,2,3,4)
178

179 else: #Otherwise test on the remaining
180

181 X_test.append(X[Xdir[filename]]) #Features of audio sample 6-10
182 Y_test.append(int(filename[0]))
183

184

185 #feature scaling in order to standardize the features
186 scaler = StandardScaler().fit(X_train)
187 X_train = scaler.transform(X_train)
188 X_test = scaler.transform(X_test)
189

190 #Create a training file that will contain the training data
191 trainfile = "Question1.dat"
192 #Cross validation in order to get the best C and Gamma parameter
193 custom_dump_svmlight_file(X_train, Y_train, trainfile)
194 crange = "-5,13,2"#"1,5,2"
195 grange = "-15,5,2"#"-3,2,2"
196

197 C,gamma,cvrate = paramsfromexternalgridsearch(trainfile, crange, grange,
printlines=True)

198 #for 2 accents: best was C=2**3, gamma=2**-15
199 clf = SVC(gamma=gamma,C=C, kernel="rbf")
200 clf.fit(X_train,Y_train)
201

202 #Passing in the test samples against the created model
203 modelPrediction = clf.predict(X_test)
204 print("The model accuracy is:",metrics.accuracy_score(Y_test,

modelPrediction)*100,"%")
205 print("precision scores")
206 print("Macro: ",precision_score(Y_test, modelPrediction, average=’macro’)

*100,"%")
207 print("recall scores")
208 print("Macro: ",recall_score(Y_test, modelPrediction, average=’macro’)

*100,"%")
209 print("f1 scores")
210 print("Macro: ",f1_score(Y_test, modelPrediction, average=’macro’)*100,"%

")
211

212

213 writetopcklfile("Question1.model",clf) #Writing the model to a picklefile
214

215 finish = time()
216 print("Time to compute Q1 %.3f s" % (finish - start))
217 #--
218 # 2.If subject is seen but sentence is unseen
219 #--
220 print("Computing Question 2: If subject is seen but Sentence is unseen")

26

221 totalaccents = 4
222 subsperaccent = 5
223 totalsents = 5
224 train_sentence = 4
225 totalsamples = 10
226

227 testsentence= totalsents - train_sentence #Don’t change
228 #Accent,Subject,Sentence,Sample
229 X_train2 = []
230 X_test2 = []
231 Y_train2 = []
232 Y_test2 = []
233

234 for acc in range(1,totalaccents+1):
235 for sub in range(1,subsperaccent+1):
236 for sent in range(1,totalsents+1):
237 for samp in range(1,totalsamples+1):
238

239 filename = ",".join([str(it) for it in [acc,sub,sent,samp]])
240

241 if sent <= train_sentence:
242

243 X_train2.append(X[Xdir[filename]]) #Features of audio sample 1-5
244

245 Y_train2.append(filename[0]) #labels (1,2,3,4)
246

247 else: #Otherwise we test on the remaining
248

249 X_test2.append(X[Xdir[filename]]) #Features of audio sample 6-10
250

251 Y_test2.append(filename[0])
252

253 #feature scaling in order to standardize the features
254 scaler = StandardScaler().fit(X_train2)
255 X_train2 = scaler.transform(X_train2)
256 X_test2 = scaler.transform(X_test2)
257

258

259 #Creating a training file that will contain the training data
260 trainfile = "Question2.dat"
261

262 custom_dump_svmlight_file(X_train2, Y_train2, trainfile)
263

264 #Cross validation in order to get the best C and Gamma parameter
265 crange = "-5,13,2" #"1,5,2"
266 grange = "-15,5,2" #"-3,2,2"
267 C,gamma,cvrate = paramsfromexternalgridsearch(trainfile, crange, grange,

printlines=True)
268 clf = SVC(gamma=gamma,C=C, kernel="rbf")
269 clf.fit(X_train2,Y_train2)
270

271 #Passing in the test samples against the created model
272 modelPrediction2 = clf.predict(X_test2)
273 print("The model accuracy is:",metrics.accuracy_score(Y_test2,

modelPrediction2)*100,"%")
274 print("precision scores")
275 print("Macro: ",precision_score(Y_test2, modelPrediction2, average=’macro

’)*100,"%")
276 print("recall scores")
277 print("Macro: ",recall_score(Y_test2, modelPrediction2, average=’macro’)

*100,"%")
278 print("f1 scores")
279 print("Macro: ",f1_score(Y_test2, modelPrediction2, average=’macro’)*100,

"%")
280

281 writetopcklfile("Question2.model",clf) #Writing the model to a picklefile
282

27

283 #--
284 # 3.If subject is unseen but sentence is seen
285 #--
286 print("Computing Question 3: If subject is unseen but sentence is seen")
287 totalaccents = 4
288 subsperaccent = 5
289 totalsents = 5
290 train_subjects = 3
291 totalsamples = 10
292

293 testsubject= subsperaccent - train_subjects #Don’t change
294 #Accent,Subject,Sentence,Sample
295 X_train3 = []
296 X_test3 = []
297

298 Y_train3 = []
299 Y_test3 = []
300

301 for acc in range(1,totalaccents+1):
302 for sub in range(1,subsperaccent+1):
303 for sent in range(1,totalsents+1):
304 for samp in range(1,totalsamples+1):
305

306 filename = ",".join([str(it) for it in [acc,sub,sent,samp]])
307

308 if sent <= train_subjects:
309

310 X_train3.append(X[Xdir[filename]]) #Features of subjects 1-3
311

312 Y_train3.append(filename[0]) #labels (1,2,3,4)
313

314 else: #Otherwise we test on the remaining
315

316 X_test3.append(X[Xdir[filename]]) #Features of subjects 3-5
317 Y_test3.append(filename[0])
318

319

320 #feature scaling in order to standardize the features
321 scaler = StandardScaler().fit(X_train3)
322 X_train3 = scaler.transform(X_train3)
323 X_test3 = scaler.transform(X_test3)
324

325 #Creating a training file that will contain the training data
326 trainfile = "Question3.dat"
327

328 custom_dump_svmlight_file(X_train3, Y_train3, trainfile)
329 #Cross validation in order to get the best C and Gamma parameter
330 crange = "-5,13,2"#"1,5,2"
331 grange = "-15,5,2"#"-3,2,2"
332 C,gamma,cvrate = paramsfromexternalgridsearch(trainfile, crange, grange,

printlines=True)
333

334 clf = SVC(gamma=gamma,C=C, kernel="rbf")
335 clf.fit(X_train3,Y_train3)
336 #Passing in the test samples against the created model
337 modelPrediction3 = clf.predict(X_test3)
338 print("The model accuracy is:",metrics.accuracy_score(Y_test3,

modelPrediction3)*100,"%")
339 print("precision scores")
340 print("Macro: ",precision_score(Y_test3, modelPrediction3, average=’macro

’)*100,"%")
341 print("recall scores")
342 print("Macro: ",recall_score(Y_test3, modelPrediction3, average=’macro’)

*100,"%")
343 print("f1 scores")
344 print("Macro: ",f1_score(Y_test3, modelPrediction3, average=’macro’)*100,

"%")

28

345 #writetopcklfile("try3.model",clf)
346

347

348 #--
349 # 4.If subject is unseen but sentence is unseen
350 #--
351 print("Computing Question 4: subject is unseen but sentence is unseen")
352 totalaccents = 4
353 subsperaccent = 5
354 totalsents = 5
355 train_sentence = 4
356 train_subjects = 4
357 totalsamples = 10
358

359 testsubject= subsperaccent - train_subjects
360 test_sentence = totalsents - train_sentence #Don’t change
361 #Accent,Subject,Sentence,Sample
362 X_train4 = []
363 X_test4 = []
364 Y_train4 = []
365 Y_test4 = []
366

367

368 for acc in range(1,totalaccents+1):
369 for sub in range(1,subsperaccent+1):
370 for sent in range(1,totalsents+1):
371 for samp in range(1,totalsamples+1):
372

373 filename = ",".join([str(it) for it in [acc,sub,sent,samp]])
374

375 if sub <= train_subjects and sent <= train_sentence:
376

377 X_train4.append(X[Xdir[filename]])
378 #X_train_labels3.append(filename)
379 Y_train4.append(filename[0]) #labels (1,2,3)
380

381 else: #Otherwise we test on the remaining
382

383 X_test4.append(X[Xdir[filename]]) #Features of subjects 3-5
384 #X_test_labels3.append(filename) #contains subjects 3-5
385 Y_test4.append(filename[0])
386

387

388 #feature scaling in order to standardize the features
389 scaler = StandardScaler().fit(X_train4)
390 X_train4 = scaler.transform(X_train4)
391 X_test4 = scaler.transform(X_test4)
392

393 trainfile = "Question4.dat"
394

395 custom_dump_svmlight_file(X_train4, Y_train4, trainfile)
396

397 #Cross validation in order to get the best C and Gamma parameter
398 crange = "-5,13,2" #"1,5,2"
399 grange = "-15,5,2" #"-3,2,2"
400 C,gamma,cvrate = paramsfromexternalgridsearch(trainfile, crange, grange,

printlines=True)
401 #for 2 accents: best was C=2**3, gamma=2**-15
402

403 clf = SVC(gamma=gamma,C=C, kernel="rbf")
404 clf.fit(X_train4,Y_train4)
405

406 #Passing in the test samples against the created model
407 modelPrediction4 = clf.predict(X_test4)
408

409 print("The model accuracy is:",metrics.accuracy_score(Y_test4,
modelPrediction4)*100,"%")

29

410 print("precision scores")
411 print("Macro: ",precision_score(Y_test4, modelPrediction4, average=’macro

’)*100,"%")
412 print("recall scores")
413 print("Macro: ",recall_score(Y_test4, modelPrediction4, average=’macro’)

*100,"%")
414 print("f1 scores")
415 print("Macro: ",f1_score(Y_test4, modelPrediction4, average=’macro’)*100,

"%")
416

417 writetopcklfile("Question4.model",clf)
418

419 main()

